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Abstract
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1 Introduction

The conditional distribution of asset returns has been widely studied and modelled using a

range of techniques. This has led to a large amount of evidence that returns of most assets

display not only time-dependence in variance, but also in higher moments. In this paper,

we model time variation in the conditional return distribution using a semi-parametric

approach based on joint models of multiple quantiles.

Using a joint model of conditional quantiles, we separately specify dynamics for a com-

mon time-varying scale and the quantiles standardised by this time-varying scale. The joint

model is estimated in a single step. Our proposed approach naturally extends GARCH and

stochastic volatility models and allows for a richer analysis of the conditional distribution

via quantiles.

An important advantage of our approach is that the scale acts as a common factor that

builds dependence across quantiles in a parsimonious manner. In turn, this makes it easier

to estimate the model with the quantiles in their standardised form.

There is a long history of research on the shape of the return distribution, which is

of central importance to asset pricing and risk management. Modellers have developed

many techniques to capture the fat-tailed and often skewed nature of return distributions

(Bates 2006). By introducing the conditionally heteroskedastic class of time series models,

Engle (1982) separated the shape of the underlying return surprise from its time-varying

and serially dependent scale. An entire literature has followed, introducing more com-

plicated dynamics for the scale and different distributions for the underlying shocks. The

GARCH(1,1) with standard normal shocks (Bollerslev 1986) captures a great deal of depen-

dence in the conditional variance, but requires modification to better fit the tails of many

return distributions (French et al. 1987, Bollerslev 1987, Hansen & Lunde 2005). Firstly, a

leverage effect (Black 1976) can be incorporated to allow asymmetric responses of volatility

to positive and negative returns (Schwert 1989, Nelson 1991, Glosten et al. 1993, Engle &

Ng 1993); or, secondly, alternative distributions can be applied for the underlying shocks

(Bollerslev 1987, McNeil & Frey 2000). Similarly, models with fat tails and long memory

in volatility (Ding et al. 1993) can be obtained through fractionally integrated GARCH

models (Baillie et al. 1996) or component models (Ding & Granger 1996, Engle & Lee
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1999). Semiparametric and nonparametric models for the conditional return distribution

have also been explored. For example, Engle & Gonzalez-Rivera (1991) and Kalli et al.

(2014) consider using GARCH models, whereas Jensen & Maheu (2010) and Delatola &

Griffin (2011) use stochastic volatility models.

Outside the discrete time GARCH framework, continuous time stochastic volatility

models are also able to generate fat-tailed return distributions with leverage effects. These

models can also incorporate features such as jumps in returns and volatility to better

explain the dynamics of returns and to improve their applicability to problems such as

option pricing; see e.g. Chernov et al. (2003) and Bates (2006) for an overview.

Despite the above improvements to GARCH or stochastic volatility models, there re-

mains residual difficulty with fitting the tails of the return distribution. For instance,

Gallant et al. (1991) show that the standardised error term has a time-varying conditional

distribution. As it is difficult to model the entire distribution, modelling efforts beyond

the variance have focused on higher moments such as skewness and kurtosis. Hansen

(1994) proposed an explicit model of time-varying higher moments, while Harvey & Sid-

dique (1999) applied an auto-regressive conditional skewness model to returns. Backus

et al. (1997) made use of a Gram Charlier expansion around the normal to back out time-

varying skewness and kurtosis from the option smirk, while Christoffersen et al. (2013)

utilised the inverse Gaussian distribution to obtain time-varying skewness in an option

pricing model.

Rather than rely on estimators of higher moments based on averages of past realised

moments, Kim & White (2004) proposed the use of quantile based estimators. They showed

through simulations how empirical moment based estimators are significantly more sensi-

tive to outliers. Effectively, they question existing beliefs about the extent and the time

variation of skewness and kurtosis.

Following Kim & White (2004), White et al. (2010) proposed joint models of conditional

quantiles to obtain robust estimates of conditional skewness and kurtosis.1 This approach

1The approach of estimating moments from quantiles has also been applied by others, including Taylor

(2005) who estimates volatility from an interquantile range, and Xiao & Koenker (2009) who estimate

GARCH models in a two-step procedure. Ghysels et al. (2011) examine the higher moments to form

portfolios, while Coroneo & Veredas (2012) to study their interdependence over time.
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develops CAViaR models (Engle & Manganelli 2004) which work well in estimating par-

ticular probability levels of the conditional distribution such as the Value at Risk (VaR),

(see e.g. Engle & Manganelli 2001, Kuester et al. 2006, Gerlach et al. 2011). They also

offer modelling flexibility as the conditional quantiles can respond to observations without

assuming a parametric return distribution. However, multiple quantiles cannot be satisfac-

tory estimated using separate application of single quantile models at different probability

levels since these estimates do not guarantee monotonicity of the quantile function, which is

often called the crossing problem (see e.g. Chernozhukov & Galichon 2008, Chernozhukov

et al. 2010, Gourieroux & Jasiak 2008, for explanations and possible solutions). Thus, it is

useful to jointly model quantiles and avoid quantiles crossing in the estimation procedure.

The specification of the multi-quantile model (MQ CAViaR) of White et al. (2010) takes

the form of a vector autoregression, which they find awkward to estimate. We propose an

alternative model for multiple quantiles which builds on the intuition that most of the

variation in the shape of the conditional return distribution should be captured by a time-

varying volatility process. Our approach builds a dependence between the quantiles via

the common scale factor (rather than the linear functions of a vector autoregression). This

model is more parsimonious than the MQ CAViaR model and achieves a robust scale and

shape decomposition of the conditional return distribution. This allows simpler comparison

to commonly used models for financial time series which directly model the conditional

variance.

Previous papers where the scale information is separately obtained and then used to

enhance quantile models, include Jeon & Taylor (2013) and Chen & Gerlach (2014). Jeon

& Taylor (2013) model VaR by incorporating option implied volatility in a CAViaR model.

Chen & Gerlach (2014) use intra-day data to capture volatility and tail risk for estimating

expected shortfall (ES) in an auto-regressive expectile model (Taylor 2008). Our approach

differs by only using the information in the daily returns to model both the scale and the

shape dynamics in a single estimation stage.

The paper is organised as follows. The following section provides a brief background

on the MQ CAViaR model. Section 3 presents the construction of our model and discusses

alternative forms for the time evolution of the scale and conditional quantiles. Section 4
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describes the estimation of the model. Applications of the models to stock index and stock

price data are discussed in Section 5. To ensure that we are capturing the dynamics well,

the models are evaluated and compared in terms of both in-sample fit and out-of-sample

forecasting criteria. Section 6 concludes.

2 Background: MQ CAViaR

For a random variable X with distribution function F (·), we define qθ to be the quantile

of X at probability level θ if F (qθ) = θ. The MQ CAViaR model of White et al. (2010)

specifies a general process for the quantiles of conditional distributions of the return series

r1, r2, . . . , rT at probability levels θ1, θ2, . . . , θK . We define qt = (qθ1,t, . . . , qθK ,t)
′ where qθ,t

is the conditional quantile of rt at probability level θ (this name emphasises the conditional

quantiles’ difference to the quantiles of the marginal distribution of rt). The MQ CAViaR

model assumes that

qt = u+
M∑
i=1

βi qt−i +
L∑
j=1

γj lj (r1, . . . , rt−1) , (1)

where M and L are the orders of the model, u and γj are K-dimensional vectors, βi is a

(K ×K)-dimensional matrix and lj (r1, . . . , rt−1) is a function of the history of the return

series.

A model with M = 1, L = 1 and l1(r1, . . . , rt−1) = |rt−1| is used in the analysis of data

by White et al. (2010) leading to the form

qt = u+ β1 qt−1 + γ1|rt−1|. (2)

Each conditional quantile is assumed to depend linearly on its first lag, on the first lags of

the other conditional quantiles, and on the absolute value of the previous return.

The MQ CAViaR is a generalisation to multiple conditional quantiles of the CAViaR

model of a single conditional quantile qθ,t (Engle & Manganelli 2004) which assumes that

qθ,t = uθ +
M∑
i=1

βθ,iqθ,t−i +
L∑
j=1

γθ,j lj (r1, . . . , rt−1) , (3)
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where uθ, βθ,i and γθ,j are scalars. The model with M = 1, L = 1 and l1(r1, . . . , rt−1) =

|rt−1| is called the Symmetric Absolute Value (SAV) CAViaR model and has the form

qθ,t = uθ + βθ,1qθ,t−1 + γθ,1 |rt−1|. (4)

The model in (2) simplifies to this model for all probability levels if β1 is a diagonal matrix.

3 An alternative approach: Scale and shape decom-

position

A reasonable goal for a multi-quantile time series model is to gain a better understanding

of the evolution of the conditional quantiles (and, more generally, the conditional distribu-

tion), and to improve the prediction of individual conditional quantiles using information

from other conditional quantiles. To guide us about the form of the relationship between

conditional quantiles without making any parametric assumptions about the conditional re-

turn distribution, we first examine several separately estimated conditional quantiles. The

conditional quantiles with probability levels 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, and 0.99 were

separately estimated using a univariate Component CAViaR model (see e.g. Mitrodima

& Oberoi 2015). The data consists of S&P500 index returns obtained from CRSP for

the period January 01, 2002 to December 31, 2014. By plotting the separately estimated

conditional quantiles together in Figure 1, we observe the time-variation in the scale of

the distribution. The conditional quantiles increase and decrease together (as might be

expected), but they also appear to do so proportionately to each other.

To make this point clearer, we plot the differences between adjacent conditional quan-

tiles in Figure 2. The differences between adjacent conditional quantiles tend to follow very

similar patterns over time. This suggests that a substantial part of the joint dynamics of

the conditional quantiles could be simply captured in a multi-quantile time series model

by introducing a common scale process (a common scale parameter is often assumed in

models of returns data such as a GARCH model). If we want estimates of the MQ CAViaR

which avoid the conditional quantiles crossing, we will need to place constraints on the

cross-autoregressive terms. Since these constraints need to be applied to the fitted condi-

tional quantiles at each time point, the set of allowable parameter combinations will become
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Figure 1: Separately estimated conditional quantiles for S&P500
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Figure 2: Differences between adjacent conditional quantiles for S&P500

smaller as the observed time series becomes longer. Consider modelling two conditional
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quantiles using the MQ CAViaR model in (2) with

u =

 0.01

0.05

 , β1 =

 β0.01,0.01 β0.01,0.05

β0.05,0.01 β0.05,0.05

 and γ1 =

 γ0.01

γ0.05

 .

For a given β0.01,0.01, the range of values of γ1 that avoid crossings (i.e. q0.05,t < q0.01,t)

becomes increasingly restricted as β0.01,0.05 increases. Given the usual range of variation

of |rt|, this exacerbates the well known problem of allocating appropriate weights to past

observations of returns.

Our modelling approach assumes that rt = stzt, where st is time-varying scale and zt is

a standardised return which follows a time-varying distribution (many standard models for

returns assume a time-invariant distribution for zt). We define st to be a robust scale mea-

sure defined in terms of the conditional quantiles of rt (such as the conditional interquartile

range) and assume that a further K − 1 conditional quantiles of the standardised returns

follow independent CAViaR models. Suppose that st = qθ1,t − qθ2,t, where θ1 = 1− α and

θ2 = α for α < 1/2 and θ3, . . . , θK are K − 2 further probability levels then our model is

st = qθ1,t − qθ2,t = u(s) +
M∑
i=1

β
(s)
i st−i +

L∑
j=1

γ
(s)
j lj (r1, . . . , rt−1)

q
(z)
θk,t

= u
(z)
θk

+
M∑
i=1

β
(z)
θk,i
q
(z)
θk,t−i +

L∑
j=1

γ
(z)
θk,j

lj (r1, . . . , rt−1) , k = 2, . . . , K, (5)

where M and L are the orders of the model, u(s), β
(s)
i , and γ

(s)
i are scalars, u and γ

(z)
j

are (K − 1)-dimensional vector, β
(z)
i is a ((K − 1) × (K − 1))-dimensional matrix and

lj (r1, . . . , rt−1) represents a function of the history of the return series. We choose to use

the conditional interquartile range which arises if α = 0.25 as our robust scale measure

which seems reasonable if there is less time-variation in the body of the distribution than

the tails of the distribution. In our application, we have found that the results do not

change with smaller values of α.

The model can be expressed in terms of the conditional quantiles of the return dis-

tribution at probability levels θ1, θ2, . . . , θK using the transformation qθ1,t = qθ2,t + st and
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qθj ,t = stq
(z)
θj ,t

for j = 1, 2, . . . , K leading to the following model for qθ1,t, qθ2,t, . . . , qθK ,t,

st = u(s) +
M∑
i=1

β
(s)
i st−i +

L∑
j=1

γ
(s)
j lj (r1, . . . , rt−1)

qθ1,t = qθ2,t + st

qθk,t = st

(
u
(z)
θk

+
M∑
i=1

β
(z)
θk,i

qθk,t−i
st−i

+
L∑
j=1

γ
(z)
θk,j

lj

(
r1
s1
, . . . ,

rt−1
st−1

))
, k = 2, . . . , K.

Choosing M = 1, L = 1, θ1 = 0.25, θ2 = 0.75 and l1(r1, . . . , rt−1) = |rt−1| leads to a

generalisation of the SAV CAViaR model, which we define to be the J-SAV-IQR model

which has the form

st = qθ1,t − qθ2,t = u(s) + β
(s)
1 st−1 + γ

(s)
1 |rt−1| (6)

qθk,t = st

(
u
(z)
θk

+ β
(z)
θk,1

qθk,t−1
st−1

+ γ
(z)
θk,1

|rt−1|
st−1

)
, k = 2, . . . , K.

This model has some interesting features. It directly models the extent of time variation in

the shape of the conditional return distribution after controlling for the scale. It allows us

to robustly estimate the scale (without separately estimating a volatility model) and the

conditional return distribution in a single estimation step. The quantile crossing problem

can be avoided during estimation, without assuming an explicit model for the conditional

return distribution. It is also more parsimonious than the MQ CAViaR model and, con-

sequently, can potentially enjoy improved estimation and predictive performance. If we

consider the MQ CAViaR model in (2) for K probability levels with M = 1 and L = 1, the

number of parameters is 2K + K2. In contrast, when M = 1 and L = 1, the J-SAV-IQR

model has 3K parameters and the difference becomes larger as K increases

While the SAV is one of the simplest dynamic structures proposed for CAViaR models,

several variations of this model have been developed, (see e.g. Engle & Manganelli 2001,

2004, Kuester et al. 2006, Gerlach et al. 2011, Mitrodima & Oberoi 2015). Some of the

features that these models account for include the leverage effect, long range dependence in

the quantile dynamics, and a time-varying mean of the returns themselves. The Component

Asymmetric Slope (C-AS) CAViaR model from Mitrodima & Oberoi (2015) incorporates

all the above features by allowing the mean of the quantile process u to be time-varying,

introducing long range dependence in the same spirit as Engle & Lee (1999). To avoid the
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model becoming over-parameterised and following our findings from Figure 2, we consider

only giving the scale process this structure leading to a scale process of the form

st = qθ1,t − qθ2,t = u
(s)
t + β

(s)
1

(
st−1 − u(s)t−1

)
+ γ

(s)
1 r+t−1 + γ

(s)
2 r−t−1

u
(s)
t = ω(s) + ρ(s) u

(s)
t−1 + γ

(s)
3 rt−1, (7)

where r+ = max(r, 0) and r− = −min(r, 0). The modelling of the conditional quantiles of

z retains the SAV CAViaR form in (6). We call this the J-SAV-CASIQR model and its full

specification is

st = qθ1,t − qθ2,t = u
(s)
t + β

(s)
1

(
st−1 − u(s)t−1

)
+ γ

(s)
1 r+t−1 + γ

(s)
2 r−t−1

u
(s)
t = ω(s) + ρ(s) u

(s)
t−1 + γ

(s)
3 rt−1,

qθk,t = st

(
u
(z)
θk

+ β
(z)
θk,1

qθk,t−1
st−1

+ γ
(z)
θk,1

|rt−1|
st−1

)
, k = 2, . . . , K.

Notice that this model nests the J-SAV-IQR model in (6).

4 Estimation

The parameters of the J-SAV-IQR and J-SAV-CASIQR models with probability levels

θ1, θ2, . . . , θK can be estimated by applying the regression quantile criterion (Koenker &

Bassett 1978, Engle & Manganelli 2004, Chernozhukov & Umantsev 2001), interpreted as a

set of estimating equations (see e.g. Komunjer 2005, Komunjer & Vuong 2010, White et al.

2010). We write the vector of all parameters as Φ and use the Quasi-Maximum Likelihood

Estimator (QMLE) Φ̂ which maximises the quasi-likelihood function

− 1

T

T∑
t=1

K∑
k=1

[θk − I(rt < qθk,t(Φ))][rt < qθk,t(Φ)],

where T is the sample size and I is the indicator function. White et al. (2010) prove the

consistency of the MQ CAViaR estimator under a set of general conditions. They also

derive a central limit theorem and show how the covariance matrix of the parameters can

be consistently estimated. Their methods can be used to prove the same results for our

models under a similar set of assumptions.
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The quasi-likelihood function can be highly multi-modal for multi-quantile time series

models such as MQ CAViaR and the models developed in this paper. Therefore, calculation

of the QMLE can be challenging. This problem is less pronounced with the J-SAV-IQR

and J-SAV-CASIQR than the MQ CAViaR since there are less parameters to be estimated.

However, estimates for each model can be sensitive to the estimation strategy used. For

J-SAV-IQR, J-SAV-CASIQR and MQ CAViaR, we apply an estimation strategy proposed

by Mitrodima et al. (2016). Separate optimisers of the QML are run for a set of initial

parameter values (the Matlab optimiser “fminsearch” was used in our examples), and the

outputted parameter value with the largest QML is reported as the estimate. The set of

initial parameter values are chosen to be consistent with the data and to have a correct

ordering for the quantiles. This procedure leads to improved estimates of the MQ CAViaR

model relative to the original estimation procedure described in White et al. (2010), and

is also particularly well suited to our model.

In the case of J-SAV-IQR model, the procedure begins by choosing a small set of possible

values for β
(z)
θk,i

and β
(s)
i between 0.5 and 0.9. For instance, one may start off by setting

all the β
(z)
θk,i

at 0.5 and then at 0.7, and β
(s)
i at 0.5 and 0.9. This initially gives four sets

of starting β values. Associated with each set of β values, a set of five possible values

for γ
(z)
θk,i

or γ
(s)
i is chosen. The possible values for γ

(z)
θk,i

are {−0.2,−0.1,−0.02,−0.01, 0} if

θk < 0.5 or {0, 0.01, 0.02, 0.1, 0.2} if θk > 0.5. For γ
(s)
i and γ

(z)
0.5,i, both positive and negative

values from the above sets are chosen. A starting value for u
(z)
θk

can be chosen so that the

unconditional mean of qθk,t/st is equal to the corresponding quantile of a standard normal

distribution (although, other distribution could be used). The initial value for u
(z)
θk

is

u
(z)
θk

= (1− β(z)
θk,1

)qθk − γ
(z)
θk,1

E

[
|rt|
st

]
,

where qθk is the quantile of standard normal distribution at probability level θk. We also set

E
[
|rt|
st

]
= 1

1.347

√
2
π
. A similar strategy is applied to the IQR, whereby u

(z)
t is chosen so that

the unconditional mean of st is equal to the corresponding sample IQR. This procedure

can easily be extended to the J-SAV-CASIQR model.

The procedure for finding initial values for the J-SAV-IQR and J-SAV-CASIQR models

exploits the use of standardised quantiles but it can be extended to the MQ CAViaR

model. In the case of MQ CAViaR model, we set the diagonal elements of the matrix β1
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and the elements of the vector γ1 in the same way as for the scaled models above. All cross

diagonal elements of β are initialised at 0. We then choose each element of the vector u so

that the unconditional mean of each qθk is equal to the corresponding empirical quantile

estimated from the data. Our estimation approach is similar in spirit to the variance

targeting strategy explained in Christoffersen (2003), but it is only used to initialise the

optimisation, not as a constraint. Following Engle & Manganelli (2004), we initialise the

quantile and interquantile range series at their empirical counterparts (using the first 300

observations).

5 Analysis of stock price and stock index data

We use data provided by CRSP. We analyse the S&P500 index, along with the stocks

IBM, Exxon Mobil, and Intel Corporation (INTC). The complete data set consists of daily

log returns from January 01, 2002 to December 31, 2014, with the last two years reserved

for out-of-sample testing. We will initially describe inference over a ten year period from

January 01, 2002 to understand the underlying dynamics of the return distribution and

then discuss out-of-sample predictive performance over a two-year period using daily rolling

estimates of the conditional quantiles without re-estimation of the model parameters. For

comparison, we estimate the MQ CAViaR as well as our proposed scale-shape models J-

SAV-IQR and J-SAV-CASIQR for the 0.01, 0.05, 0.25, 0.50, 0.75, 0.95 and 0.99 probability

levels.

5.1 Results

The estimated conditional quantiles and their values standardised by the conditional in-

terquartile range for INTC and S&P500 are shown in Figures 3 and 4. A vertical line

marks the end of the in-sample estimation period and the beginning of the out-of-sample

period. The results show that there is substantial time-variation in the conditional quan-

tiles captured by all models for both INTC and S&P500. The estimated standardised

conditional quantiles for all models show much less variation over time and illustrate that

a lot of the time-variation in the conditional quantiles can be captured through the con-
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Figure 3: Quantile estimates for INTC

ditional interquartile range. The smoothness of the estimated standardised conditional

quantiles varies with the probability level with the paths becoming rougher in the tails

of the distribution. The estimated standardised conditional quantiles also show clear dif-

ference between the J-SAV-IQR and J-SAV-CASIQR models (which directly model the

conditional interquartile range) and the MQ CAViaR model. The MQ CAViaR model has

smoother estimates of all standardised conditional quantiles apart from the lower 1% point.

To better understand how the models respond to shocks, we plot the estimated condi-

tional quantiles for INTC in the period from September 1, 2007 to August 31, 2009, covering
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Figure 4: Quantile estimates for S&P500

the financial crisis. There are two clear shocks: one in early 2008 (as the subprime mortgage

crisis spread) and another in September 2008 (due to the collapse of Lehman Brothers).

In both cases, the J-SAV-CASIQR model has the largest response to shock followed by

the J-SAV-IQR and MQ CAViaR models. For both shocks, there is a clear pattern of a

temporary decrease in the 1% standardised quantile and increase in the 99% standardised

quantile which indicates that the conditional return distribution becomes heavier tailed in

these periods. This is consistent with our intuition about the conditional return distribution

at times of market stress. The estimated standardised quantiles of the MQ CAViaR model
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Figure 5: Quantile estimates for INTC from September 01, 2007, to August 31, 2009.

behave in a different way with a steady shift inwards of the 1% standardised quantile and

much smaller increases in 99% standardised quantile. The J-SAV-IQR and J-SAV-CASIQR

models show a much sharper response of the unstandardised conditional quantiles to the

financial crisis in 2008.

The conditional quantiles estimates for INTC from from September 1, 2007 to August

31, 2009 using the J-SAV-IQR and MQ CAViaR models are compared to the conditional

quantiles estimates from a GARCH(1,1) model with t-distributed innovations in Figure

6. The latter model assumes that the standardised conditional quantiles are constant over
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Figure 6: GARCH vs J-SAV-IQR (upper panel) and GARCH vs MQ CAViaR (lower panel)

for INTC from September 01, 2007, to August 31, 2009.

time. The estimates of the conditional quantiles are similar apart from the periods following

the two shocks. Following the shocks, the 75% and 25% conditional quantiles move further

away from 0 with the GARCH model than the quantile based models. This is because

the GARCH model cannot accommodate the heavier tails following a shock leading to

overestimation of the volatility. This emphasises the importance of allowing the shape of

the conditional distribution of returns to change over time.

The estimates of the conditional skewness and kurtosis can be calculated from the
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estimated conditional quantiles using the following formulae suggested by White et al.

(2010) and Kim & White (2004), who follow the statistics literature on robust estimators

of higher moments. The daily conditional skewness is estimated as

q0.75,t + q0.25,t − 2× q0.50,t
q0.75,t − q0.25,t

and the kurtosis as
q0.99,t − q0.01,t
q0.75,t − q0.25,t

− 3.45.

In Figures 7 and 8, we plot the series of the conditional skewness and kurtosis for INTC

and S&P500 respectively, estimated by the three models. The conditional skewness results
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Figure 7: Quantile-based measures of conditional skewness and kurtosis for INTC

for INTC using the J-SAV-IQR model (in Figure 7) show a clear pattern with periods of

both positive and negative skewness. These estimates are consistent with what we might

expect from a stock, with positive skewness in better times and negative skewness in times

of stress. The MQ CAViaR model also shows a similar pattern over time but smooths

out some of the features. The J-SAV-IQR and J-SAV-CASIQR also generate much greater

range in the conditional kurtosis over time. In contrast, the estimated conditional skewness
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Figure 8: Quantile-based measures of conditional skewness and kurtosis for S&P500

for the S&P500 index is negative at all times but with a much wider range of values for the

J-SAV-IQR and J-SAV-CASIQR models. Once again, the negative conditional skewness

of the index is consistent with the stylised facts of returns data. Although the causes

of this effect may be disputed, it is well known that indices display a more pronounced

leverage effect than their constituent stocks individually. One explanation for this is that

correlations between returns are higher in bad times than in good.

5.2 Coverage tests

One of the ways of evaluating the fit or the performance of the models is to compare their

in-sample, and respectively, out-of-sample hit ratios (coverage). Of particular importance

is the out-of-sample performance of the models in the tails of the distribution, as seen in

Table 1. We report in- and out-of-sample hit ratios ( 1
T

∑T
t=1 I(rt < qθ,t)) for each of the

joint quantile models for the three assets in turn.
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All models perform well overall, with the two new models matching the coverage of the

MQ CAViaR model with far fewer parameters. On the other hand, none of the multiple

quantile models seem to be able to capture potential short-term shifts in the location of the

return distribution. As a result, the out-of-sample forecasts of the inner conditional quan-

tiles appear to be biased. This may support the case for allowing the returns themselves to

have some dependence, as suggested by Kuester et al. (2006). An alternative explanation

is that our proxy for the scale does a good job of capturing the long-range dependence in

scale, thereby doing a poor job of matching up the quartiles on an unconditional basis.

The explanation one accepts is based on whether we consider the case of S&P500, where

the out-of-sample coverage appears to have shifted, or the other cases where one of the

conditional quantiles is predicted fairly accurately, but the conditional interquartile range

pushes the other quartile out on average.

While unconditional hit ratios are widely applied, there is a large literature proposing

better tests of interval forecasts (see e.g. Christoffersen 1998, Christoffersen et al. 2001,

Engle & Manganelli 2004, Komunjer & Giacomini 2005, Berkowitz et al. 2011, Gaglianone

et al. 2011). Based on the testing literature, we need to examine whether the violation or

hit sequence produced by the model has a predictable pattern. We apply three tests to each

of the quantile series out-of-sample to ensure that the models’ performance is comparable

to, or better than, existing quantile forecasting models.

Following the suggestion of Berkowitz et al. (2011), we report the Dynamic Quantile

(DQ) test of Engle & Manganelli (2004) in Table 2.2 Overall, the models perform quite

well on the tests compared to the models available in the existing literature. None of the

four outer conditional quantiles are rejected in any of the models for any of the assets at

the 5% significance level.3

However, the objective of this paper is not only to propose a more parsimonious and

2Other tests calculated but not reported include the unconditional coverage test and conditional coverage

test from Christoffersen (1998). All results are available from the authors and will be placed in an online

appendix.
3All the tests reported are univariate, i.e., testing one quantile at a time. The focus of this literature

and model development has been on univariate specifications because of their use in forecasting extreme

losses in finance and insurance. We have used these tests mainly for comparability and to demonstrate

that they perform better or no worse than similar univariate models.
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Table 2: DQ test p-values

J-SAV-IQR J-SAV-CASIQR MQ CAViaR

S&P500

θ

0.99 0.9291 0.7839 0.0032

0.95 0.6625 0.5311 0.4002

0.75 0.0019 0.0641 0.0098

0.50 0.0012 0.0375 0.1295

0.25 0.0032 0.0407 0.0101

0.05 0.2300 0.3722 0.2098

0.01 0.8899 0.7012 0.9639

IBM

θ

0.99 0.9726 0.9467 0.9983

0.95 0.5695 0.2995 0.1436

0.75 0.3357 0.2977 0.1757

0.50 0.6919 0.2743 0.3682

0.25 0.4073 0.1780 0.3376

0.05 0.8707 0.4433 0.7463

0.01 0.9534 0.9505 0.9381

Intel Corp

θ

0.99 0.3839 0.1885 0.0259

0.95 0.4950 0.5342 0.2735

0.75 0.5963 0.4895 0.7152

0.50 0.2023 0.0046 0.2804

0.25 0.0905 0.0142 0.0395

0.05 0.6307 0.6365 0.3716

0.01 0.4599 0.9033 0.8870

Exxon Mobil

θ

0.99 0.9980 0.9863 0.9990

0.95 0.4371 0.0732 0.2616

0.75 0.2353 0.0602 0.1523

0.50 0.2117 0.2679 0.3995

0.25 0.1258 0.0835 0.0685

0.05 0.8918 0.7649 0.8080

0.01 0.9968 0.9984 0.9965

intuitive model for multiple conditional quantiles, but also to examine the implications for

time variation in the shape of the underlying distribution.

6 Conclusion

In this paper, we have proposed a multi-quantile time series model for the conditional

distribution of returns. The model is constructed by specifying a process for scale (which

is taken to be the interquartile range) and the standardised conditional quantiles (which

control the overall shape of the distribution). This mimics the standard approach to mod-
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elling financial time series, where the returns are modelled as the product of a scale and a

random shock drawn from a time-invariant distribution (for example, GARCH or stochastic

volatility modelling). Our approach builds a single model for several conditional quantiles

jointly and so avoids the need for two-stage estimation. The decomposition also assists

with the crossing problem, as does our estimation strategy of targeting the level of the

quantile process when setting initial values.

A major benefit of this approach is that we have both a robust estimate of the time-

varying scale of return distribution whilst also having time-varying estimates of the shape

of the conditional distribution. This allows us to better understand where the largest

changes in the conditional distribution of returns occur. Our results suggest that a robustly

estimated scale can capture most of the dynamics of the conditional return distribution

which leaves a relatively stable underlying shape that can be captured by fairly simple

dynamics. Our model is more parsimonious than the MQ CAViaR since each standardised

conditional quantile follows a CAViaR (rather than MQ CAViaR) model.

The estimated conditional return distribution offers useful insights into the dynamics

of stock and index returns. While each quantile, when individually modelled, requires long

memory and asymmetry to be captured adequately, this effect is subsumed in the scale

dynamics. Once the scale dynamics are accounted for, the standardised tails are suit-

ably represented by a very simple time series process, with very occasional spikes and a

little structure still remaining. This supports the use of a sufficiently complicated volatil-

ity structure to model fat-tailed and skewed return distributions, but not necessarily the

introduction of complicated distributional assumptions for the underlying shocks.
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Appendix: Additional Figures

This appendix contains figures corresponding to those reported in the paper, for the

other assets studied. Figures A1 and A2 correspond to Figures 3 and 4. Figures A3, A4

and A5 correspond to Figure 5. Figures A6, A7 and A8 correspond to Figure 6. Figures

A9 and A10 correspond to Figures 7 and 8.
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Figure A1: Quantile estimates for IBM
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Figure A2: Quantile estimates for XOM
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Figure A3: Quantile estimates for S&P500 from September 01, 2007, to August 31, 2009.
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Figure A4: Quantile estimates for IBM from September 01, 2007, to August 31, 2009.
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Figure A5: Quantile estimates for XOM from September 01, 2007, to August 31, 2009.
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Figure A6: GARCH vs J-SAV-IQR (upper panel) and GARCH vs MQ CAViaR (lower

panel) for S&P500 from September 01, 2007, to August 31, 2009.
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Figure A7: GARCH vs J-SAV-IQR (upper panel) and GARCH vs MQ CAViaR (lower

panel) for IBM from September 01, 2007, to August 31, 2009.
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Figure A8: GARCH vs J-SAV-IQR (upper panel) and GARCH vs MQ CAViaR (lower

panel) for XOM from September 01, 2007, to August 31, 2009.
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Figure A9: Quantile-based measures of conditional skewness and kurtosis for IBM
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Figure A10: Quantile-based measures of conditional skewness and kurtosis for XOM
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